Observers

clear
clc

% ---------- SYSTEM ---------- %
% numerator = [1 2.2];
% denominator = [1 -5.7 9];
% Gs = tf(numerator,denominator);
% fc = ;
% fs = fc*7;
% T = 2*pi/fs;
% Ts = round(T,2); % The sampling time must be rounded up (2 decimal places)
% Gz = c2d(Gs, Ts);
% kp_system = numerator(2)/denominator(3);

% ---------- STATE-SPACE REPRESENTATION ---------- %
sys = ss(Gz);

% Verify if the system is controllable
% The rank of controllability matrix should be that of the order of the
% system
%control_matrix = ctrb(sys.a, sys.b);
%rank_control_matrix = rank(control_matrix);

% Verify if the system is observable
% The rank of observability matrix should be that of the order of the
% system
%obsv_matrix = obsv(sys.a, sys.c);
%rank_obsv_matrix = rank(control_matrix);

% ---------- OBSERVER ---------- %
L=acker(sys.a', sys.c',[0.35 0.32 0.30])'; % The poles should be faster than 
                                           % those on the STATE FEEDBACK

results matching ""

    No results matching ""